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By Eldon E. Kordes and Edwin T. KYuszewski

SUMMARY

Experimental modes ad frequencies of an unstiffened hollow beam of
rectangular cross section are presented, and comparisons are made between
experimental and theoretical frequencies. Theories based on rigid cross

. sections were found to be sufficiently accurate to predict the frequencies
of only the lowest three bending modes. For the higher bending males and
all the torsional modes it was necessary to include the effects of cross-

*. sectional distortions in the calculations.

INTRODUCTION

T& vibration characteristics of hollow thin-walled cylindrical besms
have been investigated theoretically in references 1 and 2 for both bending
and torsional vibrations. In reference 1, frequency equations that include
the influence of transverse shear deformation, shear kg, and longitudinal
inertia are derived for the bending vibrations of cylindrical beans with
constant wall thickness. In reference 2, frequency equations that include
the influence of warping restraint and longitudinal inertia are derived
for the torsional vibrations.

In order to provide an experimental check on the theories of refer-
ences 1 and 2, vibration tests were conducted on a hollow beam of rectan-
gular cross section with no bulkheads. The purpose of the present paper
is to present these experimental results and to show the accuracies that
cm be obtained from the theories of references 1 and 2 when the effects
of cross-sectional deformation are taken into account by the methods
presented in references 3 and 4.
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EXPERIMENTAL INVESTIGATION

Description of Specimen

The specimen used in the experimental investigation (see fig. 1) was
constructed from four aluminum sheets of equal thickness welded together
along their lengths to form a uniform rectangular tube and contained no
stringers, web stiffeners, or bulkheads. The beam, whose dimensions axe
shown in figure 1, had a width-depth rqtio of 3.6 and a plan-form aspect
ratio (length divided by width) of 13.3. The material from which the
spectmen was constmcted, 3003 aluminum (fo-rmerlydesignated 3S), had a

modulus of elasticity of 10.1 x 106 pounds per square inch, a shear mod-

ulus of 3.81 x 1~ pounds per sqyare inch, and a density of 0.098 pound
per cubic inch.

.

Test Setup and 3hstrumentation
‘%-

The general test setup is shown in figure 2. The test besm was sup-
ported at each end by means of long flexible wires attached to the center
line of the top spar web. This type of sup~ort offered only negligible
resistance to,small displacements of the beam in the horizontal direction.
For small amplitudes of vibration in t’hehorizontal direction, therefore,
the specimen was considered to be essentially free-free. A fitting for
connecting the shaker to the bean was attached to one cover of the beam
at a point slightly off center in both the chordwise and spanwise &l.rec-
tions so that symmetrical and antisynmetricalbending and torsional modes
could be excited without relocating the shaker attachment point.

An electromagnetic shaker mounted on a rigid backstop was used to
tibrate the beam in the horizontal direction. The frequency of the
exciting force was controlled by a continuously variable frequency audio
oscillator which was connected to the shaker drive coil through a 500-watt
power amplifier. The direct-currentpower for the shaker field was
supplied by a motor-generator unit. The shaker system was capable of
developing a maximum undistorted force output of 26 pounds from 20 to
1,600 cycles per second and a maximum double amplitude of 1/4 inch.

In order to obtain more accurate readings of the frequency values them
were possible from the oscillator scale, a Stroboconn frequency meter was
used to measure the frequency of the oscillator signal. In this frequency
meter the oscillator output flashes a stroboscopic light onto a series of
graduated disks revolving at controlled speeds. The disk speed and hence
the frequency of vibration are known to be accurate tithin 0.01 percent. .
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A crystal phonograph pickup was used to study the motion of the
vibrating besm. The pickup has a voltage output that is proportional to
the velocity of motion and is essentially linear from 50 to 4,000 cycles
per second. A cathode-ray oscilloscope was used to indicate the output
of the pickup.

Experimental Test Procedure

The test besm and the electromagnetic shaker were mounted as shown
in figure 2. The pickup was placed on a stand so that the probe just
touched the beam. As a preliminary study of the vibration characteristics
of this test beam, the force-amplitude controls of the shaker system were
set at a constant value and the frequency was slowly increased from 20 to
650 cycles per second. During this study, each resonant frequency where
the amplitude of vibration (as viewed on the oscilloscope) passed through
a maximum was noted. As an aid in obtaining these various resonant fre-

. quencies, the phase angle between the applied force and the mlocity of
the beam was observed. This phase angle was determined by viewing the

+’ Lissajous ellipse shown on the oscilloscope when the pickup output was
applied to one axis and the oscillator output to the other.

After the preliminary study was completed, each of the observed
resonant frequencies was reestablished and held constant while a survey
of the correspon&Lng mode shape was made. This was done by roving the
pickup along the beams and noting the location of the null points and
the phase of the motion between the null points. The type of vibration
and the relative amplitude of the various points on the test beam were
thus established. In this manner, all beam bending and torsional males
in the frequency range from 20 to 650 cycles per second were identified.
Once the mode of vibration was identified, the frequency was read from
the frequency meter. As might be expected, resonances not associated
with besm bending and torsional modes were observed during the test.
These resonances were presumably due to locsl effects and are not con-
sidered in this report.

Experimental Results

In the frequency range covered by the tests, the first ten natural
beam frequencies (five bending and five torsional) were obtained, ad
these frequency values and the nodal patterns corresponding to each of
the natural frequencies f are shown in figures 3 and 4. These patterns
for all but the fifth torsional.mode are shown only for the front cover
since they were essentially the ssme in both cover sheets. In the fifth
torsional mode the nodal patterns in the two covers were different; both
patterns are shown in figure 4. The nodal patterns for all the symmetri-
cal modes (both bending and torsional) and for the lowest antisymmetrical



4 NACA TN 3463

bending and torsional modes are definitely beam nodal patterns. For the .

remaining antisymnetricalmodes, however, the nearness of the shaker
attachment to the center line of the bean evidently caused a shifting of
the nodal patterns. The tendency of the nodal lines to shift is probably “
increased by the absence of internal stiffening members in the test beam.

Amplitude surveys made.to establish the nodal shapes disclosed an
interesting phenomenon pertaining to the distortions of the cross section.
For the higher bending modes, the deflections at the center line of the

cover were from l; to 3 times as great as the deflections of the corners

of the tube. No such large distortions of the covers were evident for
the torsional modes.

THUXE’I’ICALCALCULATIONS AND COMPARISONS

WITH EXPERIMENTAL RESULTS

Bending

A solution for the itransversevibrations of hollow thin-walled beams
was presented in reference 1. The first five natwral bending frequencies
of the test besm were calculated from the frequency equations derived in
reference 1 and are presented in table I along with the experimental fre-
quencies and the frequencies calculated from elementary besm theory. The
frequency equation and the values of the parameters used for these calcu-
lations are shown in appendix A.

Comparison of the results presented in table I shows that for all
modes the frequencies calculated from the equations of reference 1 are in
better agreement with experimental frequencies than with those calculated
from elementary besm theory. For the first three modes, the agreement
between the experimental frequencies and those calculated from reference 1
is within 12 percent. For the higher mode$, however, the agreement is
not very satisfactory.

Examination of the assumptions used in the derivation of the frequency
equations in reference 1 shows that, although the influence of transverse
shear, shear lag, and longitudinal inertia are included, the results me
applicable only to cylindrical besms whose cross sections remain relatively
undistorted. The particular test beam used in the experimental investiga-
tion contained no bulkheads, stiffeners, or stringers to help prevent
cross-sectionaJ distortions. Furthermore, as mentioned in the preceding
section, results of the amplitude s~”ys showed that, for the higher modes
of bending vibration, the covers of the beam vibrated out of their plane
with considerable amplitude. The fact that these local cover or panel
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vibrations can have appreciable effect on the beam vibrations is substan-
tiated in reference 3 where it is shown that inertial coupling exists
between the local panel vibrations and overall transverse vibrations. The.
result of this coupling is a reduction of the bending frequencies calcu-
lated for rigid cross sections. As is found in reference 3, this reduc-
tion is dependent on the uncoupled panel frequency (frequncy of panel
titration with the overall besm vibration restrained). Methods are
included therein for determining this uncoupled panel frequency and for
estimating the reduction in bending frequencies due to panel vibrations.

The mthod of reference 3 has been used in appendix A to correct the
calculated beam bending frequencies of the test bean for the effects of
panel distortions. These corrected frequency values =e shown in table 1.
From the results in this table it is seen that the effects of panel dis-
tortion are negligible for the first mode but become important-for
higher modes. Also, the corrected frequencies me seen to compare

. well with the experimental frequencies.

kf Torsion

the
very

A solution for the torsional vibrations of a hollow thin-walled beam
was presented in reference 2. From the frequency equations derived in
this reference the first five torsional frequencies of the test beam were
calculated as shown in appendix A. These calculated frequencies are pre-
sented in table II along with the experimental frequencies. For complete-
ness the frequencies calctiated from elementiy torsion theory are also
included in table II.

Although the frequency eqmtions of reference 2 include the effect

oof warping restraint smd longitudinal inertia> eXSmi~tion of col~s 2

0and 4 in table II shows that the results from these equations do not

predict the natural torsional frequencies with any degree of accuracy.
The calculated frequency for the first torsional mode tiffers from that
found experimentally by more than 25 percent, whereas the calculated fre-
quency for the fifth mode is almost three times as large as the measured
frequency.

Since the analysis used in reference 2 is
that the distortions of the cross sections are
crepancies between calculated and experimental
be due to cross-section distortions.

based on the assumption
negligible, the large dis-
torsional frequencies could

Reference 3 showed that panel flexibilities can have an effect on
torsional frequencies similar to the coupling effect described for bending.
vibrations. For the particular test beau, however, the effects were found
to be small - only a 3-percent reduction of the fifth torsional frequency.

. The reason for this small reduction is that, in the particular type of
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panel vibration considered in
not move with respect to each
section are allowed. Since a
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reference 3, the corners of the beam do
other; no she&ring tistotiions of the cross
beam in torsional oscillation is subjected

to cross-sectional shearing forces, cross-sectional shear deformations
should be considered.

The influence of shear flexibility of cross sections on the torsional
frequencies of box besms was investigated in reference 4. As could be
expected, one of the quantities on which this influence is dependent is
the effective cross-sectional shear modulus of the beam cross section Ge.

The test beam contains no internal bulkheads; therefore, the shear stiff-
ness of the cross section is due only to the Vierendeel truss action of
the rectangular bent formed by the walls of the tube. On the basis of
the assumption of rigid joints at the corners, the effective sheer modulus
of a bent is determined in appendix B.
Ge of 2,~40 pounds per square inch for

appendix A.

On the basis of this value of Ge,

From these resuLts the value of
the test beam is calculated in

the torsional frequencies of the

test beam have been recalculated in appendix Aby the method of reference 4.

Jkmmination of these results shows that, with the inclusion of shear
flexibility of the cross section, there is a considerable reduction in the
calculated frequencies. The percentage reduction, however, is still short
of that necessary for good agreement betweericalculated and experimental
frequencies. Since the tube consisted of aluminum sheets welded along the
corners, a poor or incompletely penetrating weld would result in flexible
corner joints and, consequently, in a reduction in the value of Ge from

that calculated by use of the eqwtion derived in appendix B. In order to
check the completeness of the weld, sections were cut from corners of the
test beam and wer~ prepared for microscopic study. A photomicrograph of
a typical section of the weld is shown in figure > and it can be seen
that, although the weld itself is sound, the depth of penetration is less
than half the depth of the material. Thus, the assumption of rigid corners
used in the calculation of Ge, would not be expected to apply to the test

beam, and the calculated value of Ge would be too large.

In order to obtain a value for the effective shear modulus of the
cross section that is appropriate for the @st be~, a value of Ge was

determined experimentally. Several l-inch slices were cut from the test
bean and loaded diagonally, and the change in length of the diagonals was
measured. From the results of these tests, the measured values of Ge

were found to range from 1,080 to 1,520 pou@s per square inch with an
average value of 1,2$10pounds per square inch. This average value of Ge

was then used and the calculation based on the analysis of reference 4
was repeated.
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Results of calculations for this measured value of Ge are shown in
table 11. It is seen that good agreement exists between these frequencies

. and the experhental frequencies. These results indicate that, once the
effective shear modulus of the cross section is known, the results of ref-
erence 4 cam predict natural torsional frequencies with good accuracy.

It shotidbe pointed out that the final results based on reference 4
do not include the effect of longitudinal inertia. The effects, however,
were shown in reference 2 to be negligible for the values of plan-form
aspect ratio of the test beam.

CONCLUSIONS

The first ten natural beam nmdes and frequencies obtained from tibra-
tion tests of a hollow beam of rectangular cross section are presented.

. l?hm comparisons made between these experimental and calculated frequencies,
the following conclusions can be made:

u 1. The frequency equation derived in NACA Rep. 1129 predicts the fre-
quencies of transverse vibration of tubes with reasonable accuracy as long
as the effect of panel vibrations is small.

2. Local panel titrations can have an appreciable influence on the
higher transverse modes of vibrations of tubes. The analysis of NACA
TN 3070, however, predicts the correction for the effect of local panel
flexibilities very well.

3. For beams, such as the test beam, which have very flexible cross
sections, the torsional frequency equations derived in NACA TN 3206 are
not directly applicable.

4. The effect of local panel vibrations on the torsional frequencies
of the test beam was small. The effect of shear distortion of the cross
section, however, was krge because of the absence of buJJsheads,but the
effect of this distortion on torsional frequencies,is predicted very sat-
Isfactorilyby the theory derived in NACATN 3464.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., April 13, 1955.
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CALCULA!I’IONFOR BEAM VIBRATION MODES

Bean Bending Modes

The frequency equations for symmetrical and antisymetrical free-
free “~es.mbending modes are given by-equations (41) and (52), respec-
tively, in reference 1 and are repeated here for convenience. —

For the symmetrical modes

and for the

[

m

‘B2 E
n=2,4,6

antisymetrical modes

2kB2

()

L—
nlcl?n+

where, for cylindrical

2A 2W

F

: %2

fi2%%1 n= ,2,3 Bo2kS2 + K2n2
1

+*=O

beams of rectangulsx cross section,

J.#=o
2

—

w

(A2)

(A3)

4
In these equations kB h the frequency parameter defined as kB2 = ~IB2

EIY

where ~ is the natural circular frequency in radians per second.

In this section and in those that follow, the equations presented
and the symbols used are the same as in the reference for the particular
section. Therefore, the reader is cautioned to observe that the defini- “
ti.onsfor symbols are not interchangeable:.For this reason, most of
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the symbols are defined separately in each section. The following
symbols, however, are the ssme throughout:

a half-depth of beam measured

b half-width of beam measured

s distance along perimeter of

from meikbn lineZ 1.00 in.

from median line, 3.60 in.

cross section

t wall thickness, 0.246 in.

.

.

%-

L half-length of beani,47.86 in.

P perimeter of cross section, 18.40 in.

E modulus of elasticity, 10.1 x 106 lb/in.2

G shear modulus of elasticity, 3.81 x 106 lb/in.2

i,n integers

The various parameters given in reference 1 are defined and their
numerical values for test besms are given as follows:

P mass of beam per unit length, 1.15 x 10-3 lb-see I2 in.2

A
2

cross-sectional area, 4.52 in.

4
‘Y mininmmmoment of inertia of cross section, 3.87 in.

kB frequency coefficient, 1.2% x 10-2

.

●

kS coefficient of

coefficient of%1

K

‘i

rEIY
shear rigidity, — = 6.74x 10-2

L2AsG

r

‘Yrotary inertia, — = 1.932 X 10-2
@

r5. (3.431geometrical parameter,

*2

effective shear-carrying area,
$

t sti2e dS = o.g84 in.
2
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% Fourier coefficient,

g
P
$

sine sin~ds=O (n even)

1.273. — cos 1.23n. (n odd)
u

0 inclination of normal with vertical

The numerical values given for the aforementioned
were used, and the natural frequencies of bending
lated fr6m equations (Al) and (A2) by trial.

Local Panel Vibration

The procedure recommended in reference 3 for

various parameters
vibration were calcu- .—

estimating the effect
of local panel vibrations on the vibrations of box beams was used to
correct the calcul&ted beam bending frequencies of the test beam. These
corrections were made as follows:

(1) The values of the “uncoupled” bending frequencies were taken as
the values given in column @ of table I.

(2) By using the width-depth ratio of 3.6 and the thickness ratio
of 1, the values of the uncoupled member frequency of 833 cycles per
second and the coupling constant of 0.58 were obtained from figures 7
snd 8 of reference 3.

(3) The values of the coupled frequencies corresponding to the values
of uncoupled frequency shown in column ~ of table I were then determined
from fig&e 6 of reference 3.

.

Beam Torsion Modes

The frequency equations for the free-free beam torsion modes
(eqs. (40) ~d (51) of ref. 2) for the symmetrical modes are

%21‘$2 n=g,,(ii-)%]=0 (A4)
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the antisymmetrical modes are

11

In

is

in

as

P

v

%

‘Y

1=

1P

equations (A4) and (A5),

IPL2
defined as ~’ . ~~2

~ is the torsional frequency parameter and

where ~ is the natural circular frequency

radians per second.

For cylindrical beams of rectangular cross section,
r-

1}fiBi
coth —

8 -a’ (A6)

The various parameters appearing in eqwtions (A4), (A5), and (A6)
defined in reference 2 are given as follows:

distance from centroid of cross section to tangent to the
median line of wall thickness

/
2 4mass density of besm, 8.16 x 10-3 lb-see in.

cross-sectionalarea enclosed by median line of wall thickness,

&ab = 14.40 in.’

miniimm moment of inertia of cross section about

Y-SXLS, 3.87 ti.4

maximum moment of inertia of cross section about

z-axis, 27.96 in.4

mass polar moment of inertia per unit length,

P(IY + Iz) = 8.08 x 10-3 lb-see’
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4%2*
J torsional stiffness constant. _ = 11.06 in.4

‘T = 6 .6% X 10-4

coefficient

parameter,
\

.
1?

r .
of longitudinal inertia, JP21-I_ ‘o.2i7

~L2 “

rEP2—= 0.626
~2

actual wall thickness

parameter,

for i.O

Fourier constant, ~

$

p ds = 1.565 in.
P

Fourier coefficient,

~

f

p co~ 2nYts~ . -3.304 sin 1.23n (n even)
P P

=0 (n odd)

roots of the freqwncy equations (A4) and (A5) were obtained
by trial.

“ShearDeformation of the Cross Section

The analysis of the torsional tibration of box beams where the effect
of shear distortion of the cross section is included is presented in ref-
erence 4. The appropriate frequency equation, based on a four-flange box
bean, for symmetrical vibration is

-—

.
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. and for antisptrical vibration Is

where

A

AF

.
B

d

c

Ge

K

%

%0

M

s

9

The
appendix

parameter,
b2 - ~2
— = 0.829
4ab

area of flange, *(a

parameter,
(a + b)2

hb

+ b) = 0.377

= 1.468

IZ-I
inertia coupling constant, ~ + ~y = 0.757

z Y

effective shear modulus of bulkheads

restraint-of-warpingparameter,

r

IPL
frequency coefficient, %=

(‘Fa+b )

1[2
—— = 2.04 X 10-3
4GL2 t

frequency coefficient for uniform shear mode,

(

s

)
— = 18.62

1/2

1- ~2

parsmeter,
()

21 -s .2.68

1- ~2 B

Ge~2
bulkhead stiffness parameter, —y = 7.95

Gab

natural torsional frequency of four-flange box besm

effective shear modulus of the cross section is determined in
B of this paper for the test beam and is given by
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3D
Ge=—= 2,540 lb/in.2

ab(a + b)

where

D=
Et3

12(1 - #)

and v is Poisson’s ratio.

NACAl!N 3463

(A$l)
.

.

.

.

‘%$’
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EFFECTIVE

APmN-Drx

SHEAR MODULUS

B

OF CROSS SECTION

In this appendix the effective shear modulus of a rectangdar bent
is determined. For the analysis, the members of the bent are assmed to
be plate elements and the corners are assumed to remain right angles.
The deflections and bending mments due to an applied load P are as
shown in the following sketch:

z
! l-b-i

T
2a

1

-—

m

--- -p

t I

/
f

———t

The strain energy for a bent of

P
2

unit width is

where, D =
Et3

and ~ are coordinates.
12(1 - +) ‘d g -

angle y and the effective shear modulus of the section

energy for a unit width is

The relation between the
can be obtained from equation

u = 2Ge~2ab

(Bl)

In terns of the

e, the strainG

(B2)

angular displacement 7 and the load P
(Bl) by the use of Castigliano’s theorem,
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and their relation is

7 =

Substituting equation (B3)

~(a + b)

in:o equation
energy expressions from equations (Bl) and
expression for the effective shear modulus

Ge =
3D

ab(a + b)

NACATN 3463
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.

(B3)

fB2) and equating the
(B2) gives the following
of the rectangular bent:

(B4)

For the test besm, the shesr stiffness of the cross section is due .

to the truss action of the rectsmgular bent formed by the tube walls.
Thus, the effective shear modulus of the besm cross section is given by
equation (B4). w

.’

.
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TABLE I

FF@UENCIES OF BENDING VIBRATIONS

Calculated frequencies, cps

Undistortedd cross-
Experimental section theory Coupled Percent

Mode frequency, bending-panel difference

Elementary theory (based onCps
bending Reference 1 (ref. 3) experhent )

a @ a @ Q @

1 68.7 ~1.p 70.2 70.2 2.2
2 184 197’ 187 183
3 342 385 348 328 -i:;
4 464 638 545 474 2.2
5 572 953 761 586 2.5

.

*
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“J Experimental
Mode frequency,

Cps

TABLE II

FREQUENCIES OF TQRSIONALVIERATIONS

Calc

Undistortedcross-
sectiontheory

Elementary
torsion Reference2

376 377
751 753

1,128 1,133
l,wl 1,515
1,880 1,911

Lated frequencies,CPS

T-i
Flexiblecro8s-

Sectiontheory(ref.4) ~:;::::

Calculated
~eas-d (basedon

Ge G=
experiment

0 @ @

343 316
539 435 ~::
627 485
706 *1 518
825 705 8.9

*

..
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Figure 1.- Test specimen.
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(a) First symmetrical mode,
f= 68,7 Cps.

I

(b) First antisymmetrical mode t
f= 184 CPS.

(c) Second symmetrical mode,
f= 342 CPS.

I

(d) Second antisymmetrical mode,
f= 464 CPS.

I
, I

1

I i

~95,72 -1
(e) Third symmetrical mode.

f= 572 CPS,

Figure 3.- Nodal pattern for first five bending modes of test beam.

.

.

. .
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-c.

I

I
(a) First antisymmetrical mode,

f= 301 Cps,

(b) First symmetrical mode,
f= 404 Cps,

.

I

(c)Second antisymmetrical mode.
f= 455 Cps,

I, T 1
I

(d) Second symmetrical mode,
f= 530 Cps.

— Front cover
---- Back cover

I.-- -.\ \~
0“---’-x\ ------

/ \ -~
I I I

(e) Third antisymmetrical mode.
f= 648 CPS,

Figure 4.- Nodal pattern for first five torsional modes of test besm.
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Figure 5.- Photomicrograph of a typical section of corner welds” Xl’. —

.
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